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SUMMARY

The parallel implementation of an unstructured-grid, three-dimensional, semi-implicit finite difference and
finite volume model for the free surface Navier–Stokes equations (UnTRIM) is presented and discussed.
The new developments are aimed to make the code available for high-performance computing in order to
address larger, complex problems in environmental free surface flows. The parallelization is based on the
mesh partitioning method and message passing and has been achieved without negatively affecting any of
the advantageous properties of the serial code, such as its robustness, accuracy and efficiency. The key issue
is a new, autonomous parallel streamline backtracking algorithm, which allows using semi-Lagrangian
methods in decomposed meshes without compromising the scalability of the code. The implementation
has been carefully verified not only with simple, abstract test cases illustrating the application domain of
the code but also with advanced, high-resolution models presently applied for research and engineering
projects. The scheme performance and accuracy aspects are researched and discussed. Copyright q 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

High-performance computing for modelling of environmental flows is often regarded as a highly
specialized domain associated with large supercomputer facilities and requires specific technical
know-how. The appearance of widely available multi-core processors changes this situation, making
parallel computing readily affordable and awaking a broader interest in the high-performance
computing issues. In order to profit from computational resources delivered by modern parallel
computers of any kind or size, an additional, specific effort is required from the code developers.
Unfortunately, presently only in exceptional cases hydrodynamic codes are designed as parallel
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programs from scratch (e.g. [1, 2]) and normally a serial code must be adapted for the parallel
execution. This may often result in solving non-trivial problems due to the properties of the
numerical formulation, which are adverse for the parallel execution. The semi-Lagrangian advection
treatment has been an example of a numerical algorithm whose parallel implementations have
been connected with some limitations compared with their serial, original versions [3, 4].

The demand that the parallel codes are able to scale with the growing problem size is accom-
panied by the requirement that the numerical schemes they are based on have advantageous,
well-researched mathematical properties allowing the correct assessment of the application domain
of the numerical model. In this situation, the attention of researchers and engineers working
with numerical models for studying hydraulic environmental problems is attracted by simpler but
general-purpose codes, which not only cover the aimed application domain but also guarantee
efficiency, robustness and accuracy of the numerical scheme.

Since 1990 the TRIM family of finite difference models for structured meshes has been system-
atically developed by Casulli and his co-workers [5, 6], with a special attention not only to the
numerical properties of the scheme [7], but also to its practical applicability [8]. All these features
are inherited by UnTRIM, the extension of the final TRIM algorithm [9] for unstructured meshes in
order to deal with complex boundaries more flexibly and allow for local mesh refinements [10–12].

In the shortest definition, UnTRIM is a practically oriented scheme for solving the three-
dimensional (3D) Navier–Stokes equations with a semi-implicit, fractional time-step integration, a
finite difference/volume spatial discretization and a semi-Lagrangian treatment of advection using
an unstructured, staggered, orthogonal, z-level grid. The aimed application domains are 3D, non-
hydrostatic, environmental free surface flows including species transport. The mesh consists of
horizontal layers of prismatic cells with horizontal triangular or quadrilateral bases. In the partic-
ular case, when only one layer is defined, the algorithm is consistent with the two-dimensional
(2D), vertically integrated shallow water equations. Drying and flooding of computational mesh
cells is also included in a natural way.

The governing momentum equations together with the equation for obtaining the free surface
position and the incompressibility condition are treated by this relatively simple and efficient
algorithm in such a way that the numerical solution is stable with respect to the gravity waves
speed, bottom and free surface friction as well as vertical viscosity. The presence of the horizontal
viscosity implies a mild stability criterion treated iteratively when necessary. For modelling of
internal waves, their speed is also a limiting factor for the time step. In the case of barotropic flows,
when the horizontal viscosity is neglected, the scheme is unconditionally stable. Local and global
volume conservation is assured by a finite volume formulation for the incompressibility condition
and the free surface equation. The hydrodynamic algorithm is accompanied with an algorithm
for the advection–diffusion equation describing the species transport. It is globally and locally
mass conservative, satisfies a discrete minimum–maximum principle and applies flux limiters for
a higher resolution [13].

For regular meshes the discretization error is second order in space, as well as in time when
the semi-implicit scheme is equally balanced between time levels. For irregular meshes or fully
implicit computations, the discretization error grows, but can be diminished when mesh polygon
dimensions vary gradually in the domain. The highest accuracy for species transport can be obtained
when the grid is co-linear with the expected net flow streamlines.

The orthogonal, staggered mesh is beneficial with respect to the overall stability of the method
compared, e.g. with centroid-based schemes [14, 15], which justifies a larger mesh generating effort
for orthogonal meshes [16]. Additionally, the semi-Lagrangian momentum advection scheme of
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UnTRIM has clear advantages compared with Eulerian methods affected by time step and spatial
discretization limitations, especially when wetting and drying occur [1, 17, 18].

The described properties indicate UnTRIM as a general-purpose code applicable for both 2D,
depth-averaged, and 3D hydrostatic or non-hydrostatic flows. The UnTRIM software structure with
an efficient numerical kernel accessible through a rich user interface allows all steps of creative,
practical code usage from simplest, non-generic user solutions up to embedding in complex modular
software systems with, e.g. wave and morphodynamic models coupling.

It is noteworthy that the attractive properties of the Casulli formulation have motivated or
influenced numerous similar code efforts, whereby SUNTANS [17], DELFIN [14], FINEL [19] or
ELCIRC [20] can be named as examples without making any claims for completeness.

A parallel version of UnTRIM with the shared memory parallelization paradigm using OpenMP
[21] standards exists since 2002. However, even when applying state-of-the-art massive parallel
computers the maximum speedup factor of approx. 15 cannot be exceeded due to the limitations
imposed by these parts of the code, which have to be executed serially (Amdahl’s Law). Although
the presently reached affordability of multi-core processors makes the further OpenMP version
maintenance attractive, a better scalability of the code can be achieved using mesh partitioning
methods and message-passing parallelization standards, such as MPI [22].

The domain decomposition method—understood in the context that large problems are divided
into smaller ones through the introduction of usually artificial sub-domains of the geometrical
domain—is an efficient means of introducing natural parallelism into a problem, which is considered
computationally too intensive for a single processor. It is one of the most successfully applied
approaches to achieve a good parallel speedup independently from the fact if some internal parallel
properties of the algorithm itself are present or not. For hydrodynamic codes based on the finite
elements, volumes or differences methods, it is almost synonymic with the partitioning of the
computational mesh. A separate copy of the program is executed on each processor with data
concerning a partition of the meshed domain, exchanging information between these sub-domains
when necessary. The speedup factor then depends strictly on the communication efficiency with a
growing number of applied processors.

Reaching a good scalability of the parallel code for computationally intensive applications
without negatively affecting the advantageous features of the serial numerical scheme of UnTRIM
is the main aim of this study. The main difficulty approached and solved without introducing any
limitations to the parallel code is the semi-Lagrangian treatment of the advection based on the
autonomous streamline tracking over the partitioned mesh.

This paper is structured as follows. In Section 2 the fundamental governing equations are
provided for a reader unfamiliar with the UnTRIM conceptual model. The parallel implementation is
described in detail in Sections 3 and 4, in which also the mesh and the numerical scheme of UnTRIM
are presented so far as required for the understanding of the parallelization methodology. The new
parallel semi-Lagrangian advection scheme is presented in Section 4.4. The results concerning
in this case the verification of the accuracy and performance of the scheme are presented and
discussed in Section 5. A summary, outlook and conclusions are provided in Sections 6 and 7.

2. GOVERNING EQUATIONS

The application domains of UnTRIM are geophysical, environmental free-surface water flows in
moderate spatial and temporal scales, e.g. rivers, estuaries, lakes, smaller seas, etc. Therefore, the
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momentum conservation is described adequately by the incompressible, Reynolds-averaged 3D
Navier–Stokes equations with the eddy viscosity concept, Boussinesq approximation and Coriolis
parameters formulated for a Cartesian coordinate system. The continuity equation is taken in the
form typical for the environmental free surface flows. The bottom and wind friction as well as
the influence of atmospheric pressure are parametrized. Transport equations for scalars (species)
such as temperature, salinity, suspended (and settling, such as sediments) or passively transported
dissolved matter are solved as well. (In the framework of this paper the interaction between fluid
and the bottom sediments causing morphodynamic changes is not taken into account.)

The model yields results in the form of transient variables: the free surface elevation �(x, y, t),
velocity components u(x, y, z, t, ), v(x, y, z, t) and w(x, y, z, t) in the horizontal directions x , y
and the vertical z-direction, respectively (t is the time). Additionally, the normalized pressure
p(x, y, z, t) (i.e. pressure divided by the constant Boussinesq reference density �0) and the species
concentrations c(x, y, z, t) are delivered.

Denoting the variable water density as �, the constant Coriolis parameter as f and the gravi-
tational acceleration aligned with the z-direction as g, the momentum conservation equations can
be expressed as follows:
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The Boussinesq eddy viscosity components in the horizontal and vertical directions �h and �v can be
delivered by an appropriate turbulence closure model as non-negative functions of space and time.

The volume conservation condition for incompressible flows states that the velocity divergence
is equal to zero:
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=0 (4)

Making an important assumption for the conceptual model that the water elevation �(x, y, t) is a
single-valued function with respect to the vertical direction z (height function method) and using
the kinematic condition at the free surface and the impermeability condition at the bottom one
obtains the conservative form of the continuity equation for the elevation �:
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where h(x, y) is the bathymetry measured from a reference water level, assumed constant in
time in the framework of this paper. The bathymetry h is counted from the reference level 0
downwards, the free surface elevation � upwards. The total water depth is then H(x, y, t)=
h(x, y)+�(x, y, t).
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The characteristic feature of this model is the pressure treatment in Equations (1)–(3). It is
decomposed into a sum of its hydrostatic and dynamic (non-hydrostatic) components. Indeed, the
(global) pressure p(x, y, z, t) can be expressed as the sum of atmospheric pressure at the free
surface pa(x, y, t), the barotropic and the baroclinic contributions to the hydrostatic pressure and
the dynamic pressure q(x, y, z, t):

p(x, y, z, t)= pa(x, y, t)+g[�(x, y, t)−z]+g
∫ �

z

�(x, y, z, t)−�0
�0

d�+q(x, y, z, t) (6)

Introducing (6) in the momentum equations (1)–(3), one obtains the form of the momentum
equations eventually applied in the scheme:
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If the conditions for a hydrostatic approximation of the pressure apply, which is equivalent to the
assumption that the vertical accelerations are negligible, Equation (9) can be neglected and the
dynamic pressure vanishes (q=0). In this case the vertical velocity component can be obtained
from the incompressibility condition (4).

The shear boundary conditions for the momentum equations (7)–(9) at the bottom of the water
body are specified as

�v
�u
�z

=�Bu, �v
�v

�z
=�Bv at z=−h (10)

where �B is defined according to

�B=rB
√
u2+v2 (11)

where rB is a non-negative bottom friction coefficient. At the free surface, the wind stresses can
be prescribed as

�v
�u
�z

=�T (ua−u), �v
�v

�z
=�T (va−v) at z=� (12)

where ua and va are the wind velocity components in the x- and y-directions, respectively. The
coefficient �T is defined as

�T =rT
√

(ua−u)2+(va−v)2 (13)

where rT is a non-negative wind stress coefficient.
At open inflow boundaries Dirichlet boundary conditions for the velocity can be applied, also

in the form of a given fluid volume flux. For open outflow boundaries, the radiation condition is
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applied:
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where �∗(t) is the prescribed elevation and �r is a problem-specific relaxation time.
The mass conservation of scalars transported with the fluid (species) is expressed in the form

of the transport equations for their concentration c(x, y, z, t):
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The typical species are salinity, temperature, as well as suspended sediment with a non-zero settling
velocity of ws. Any passive substance transported with the fluid can also be treated in this manner.
The horizontal and vertical diffusivity coefficients (K h and K v) can be prescribed as non-negative
functions of time and space.

The boundary conditions for the scalar transport equation at the bottom and the free surface are
specified in the form of mass fluxes:

−K v �c
�z

+(w−ws)c=�B+	B(cB−c) at z=−h (16)

K v �c
�z

−(w−ws)c=�T +	T (cT −c) at z=� (17)

where �B, 	B and �T , 	T are prescribed non-negative parameters, independent from the concen-
trations c and defined at the bottom and the surface. cB and cT are the prescribed bottom and free
surface concentrations. At the lateral open boundaries, species concentrations can be imposed.

The equation system is closed by an equation of state, which relates the water density � to
the concentration of each scalar variable c, which can influence the density (such as temperature
and/or salinity):

�(x, y, z, t)=�(c(x, y, z, t)) (18)

3. THE MESH

3.1. The unstructured orthogonal mesh

The mesh structure applied in UnTRIM reflects the assumptions met in the conceptual model
and in the governing equations for environmental flows, however, without putting a strain on the
requirements for the numerical scheme. The geometrical aspects to be considered are (1) the height
function method for obtaining the water elevation �(x, y, t) with respect to the vertical direction,
(2) the typical properties of natural water bodies in which the water depth is mostly comparable or
smaller than their horizontal extend, (3) the necessity to deal with complex horizontal boundaries
which change their position due to water level changes (drying and wetting, i.e. tidal flats) as well
as (4) arbitrary bathymetries in terms of bottom gradients. Therefore, a mesh that is unstructured
in the horizontal direction, but structured in the vertical direction, with strictly horizontal layers
of not necessarily constant thicknesses, is a good choice for most applications.
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Figure 1. The horizontal staggered mesh. Although the water elevation �i is defined in the middle of a
polygon of a surface Pi , the normal velocity component u j and the bathymetry h j are defined on the
polygon sides of length 
 j and segments between circumcentres � j orthogonal to them. All variables can

be addressed using polygon-oriented (left) and side-oriented (right) connectivity tables.

The orthogonal mesh of UnTRIM consists of horizontal layers of prismatic cells with horizontal
triangular or quadrilateral bases. The horizontal (i.e. covering the (x, y)-domain) unstructured
orthogonal grid has the important property that the segments � j ( j =1,2, . . . ,Ns) joining the
circumcentres of the mesh polygons Pi with Si sides (i=1,2, . . . ,Np) must have an intersection
with their common sides 
 j and be orthogonal to each other. The resulting horizontal mesh can be
treated as a combination of a Delaunay tessellation with edges 
 j and its dual, a Voronoi diagram
with circumcentre distances � j (Figure 1).

In the vertical direction (Figure 2) the mesh consists of horizontal cell layers k so that the
distances between the mesh surfaces identified by zk±1/2 are given by �zk = zk+1/2−zk−1/2 (k=
1,2, . . . ,Nz). In this manner the 3D mesh consists of prism layers of a constant height �zk , with
horizontal faces formed by the orthogonal grid polygons Pi .

The discrete variables of the scheme are defined at staggered positions in the mesh and assumed
constant over an object they are ordered to (Figure 1). The bathymetry h j is defined constant over
a polygon side j while the elevation of the free surface �ni for the nth time step is situated at
the circumcentre of the polygon Pi and constant over its surface. The horizontal velocity unj,k ,
treated in the scheme in the normal direction to each prism face, is defined at the intersections
of the prism centres and their common faces, while the vertical velocity wn

i,k+1/2 is defined at
the circumcentres of the prism top and bottom surfaces (Figure 2). Finally, other variables such
as hydrodynamic pressure qni,k and m species concentrations cni,k,m are defined in the centres of
the prisms.

The addressing of variables defined on various points in the mesh is realized with connec-
tivity tables for Ns sides and Np polygons. The edges of the polygons can be accessed with
an index j (i, l), 1� j (i, l)�Ns, l=1,2, . . . , Si , and both polygons sharing the j-side with i( j,s),
1�i( j,s)�Np, where s=1,2 (Figure 1). The 3D connectivity tables follow the 2D pattern and
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Figure 2. The vertical mesh structure. The bathymetry h is counted from the reference level down-
wards, and the free surface elevation �n upwards. The dynamic pressure qn and species concentrations
cn are defined in the cell centres (i,k) at levels zk . The vertical velocity wn is defined on the polygon

upper and lower surfaces at the levels zk±1/2.

the cells or sides in the water columns. This indirect addressing is a characteristic feature of
unstructured meshes important for the parallel implementation.

3.2. Mesh partitioning

The description above suggests that in order to apply the domain decomposition method efficiently,
mesh partitioning into horizontally balanced, static sub-domains is appropriate. The staggered
positions of the discrete variables in the finite difference/volume scheme force an overlapping of
these mesh partitions, using halo cells along vertical interfaces between partitions; see Figure 3.

The mesh decomposition is not a trivial task, taking into account that it is usually required
that the resulting static mesh partitions should be equally large in terms of cell numbers taken
into account in the computation (thus balancing the computational load on each processor) and
the sub-domain interfaces possibly small in terms of neighbouring cell number (thus reducing the
amount of data to be exchanged between the processors).

However, with this approach and for typical geophysical applications some imbalance in the
computational effort per processor can occur. In vertical, the number of cells is variable due to the
water levels varying in time, which is taken into account by varying the indices in loops sweeping
vertical directions in the UnTRIM code. Furthermore, the movements of the free surface can result
in drying and wetting of cells during the simulation, which influences the iterative equation solvers
for the elevation and pressure as well.

The most efficient and available partitioning methods for non-trivial cases are based on the
graph partitioning theory. In the parallel implementation described here, the mesh partitioning
software for UnTRIM is based on the Metis and ParMetis libraries [23]. Although the software

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1157–1179
DOI: 10.1002/fld



PARALLEL IMPLEMENTATION OF A NON-HYDROSTATIC MODEL 1165

Figure 3. Partitioned mesh: to compute values in the internal halo cell Pi , values are required
from the external halo cell behind the interface side 
 j crossed by the segment � j joining cell
circumcentres. Streamline tracking: to obtain the next time step tn+1 advected value u∗

j,k , the
streamline is followed one time step backward in time and u∗

j,k is interpolated in the neighbour
partition cell, where the traceback ends for tn .

allows weighting the partition size according to arbitrary criteria, at this development stage the
equal balancing of the partitions in terms of polygon numbers is applied in the verification test
cases (Section 5).

4. UnTRIM PARALLEL IMPLEMENTATION

4.1. Numerical scheme outline

In this section the numerical scheme of UnTRIM is analysed in terms of the parallel implementation
using the mesh partitioning method. We concentrate exclusively on the characteristic features of the
numerical formulation relevant for the message-passing parallelization. For a complete and detailed
reference, the publication of Casulli and Zanolli [11] or Casulli and Lang [24] is recommended.

UnTRIM algorithm applies a semi-implicit, fractional time-step integration scheme. In the first
step, the provisional values for the velocity and the free surface elevation are obtained from
Equations (7)–(8) and (5), where both variables are treated semi-implicitly (�-method). For stability
reasons, the bottom and free surface friction (10)–(12) as well as the vertical viscosity are treated
implicitly. In the second fractional step, the velocity and the elevation are corrected by taking the
dynamic pressure q into account so that the resulting velocity field is solenoidal and thus volume
conservative.
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4.2. Halo swapping

An insight into the communication patterns required in the mesh partitioning method can be given
studying exemplarily the first part of the algorithm. In this semi-implicit fractional step (�-method)
the provisional horizontal velocity field ũ in the new time step n is computed taking the free
surface � and dynamic pressure component q gradients as well as the vertical viscosity �v from
the horizontal momentum equations (7)–(8):

ũn+1
j,k = Funj,k−(1−�)

�t

� j
[g(�ni( j,2)−�ni( j,1))+qni( j,2),k−qni( j,1),k]−�g
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(19)

where F is an explicit finite difference operator:

Funj,k = [1−�(1−�) f 2�t2]u∗
j,k+ f �tv∗

j,k

1+�2 f 2�t2
+�t�h�hu

∗
j,k
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� j�0

Mj∑
l=k

l [�ni( j,2)−�ni( j,1)]�znj,l (20)

where k = 1
2 and l =1, l=k+1,k+2, . . . ,Mj . In order to achieve stability of the scheme, the

implicitness factor � must be in the range 0.5���1. The range of indices k for the vertical finite
difference stencils (from m j to Mn

j , 1�m j�Mn
j �Nz) changes due to the free surface dynamics. It

must be stressed that in formulating (19)–(20) one profits from the fact that the momentum equations
are invariant to the solid body rotation in the (x, y)-plane so that u j,k denotes the horizontal
velocity component normal to the side j at the level k. The horizontal finite difference stencils,
based on the circumcentre distances � j , make an intensive use of connectivity tables like i( j,s).

The parallel treatment of the explicit operator F in Equation (20) is described in Sections 4.3.1
and 4.4. Concentrating on Equation (19), it can be noted that on a partitioned mesh, all terms
concerning the interface sides j at a level k can be computed locally in a mesh partition if it is
extended with external halo cells belonging to the neighbour partition and the values defined there
are made available by communication between partitions. The same concerns the variables defined
for central points i of internal halo cells being neighbours to the vertical partition interface; see
Figure 3. A noteworthy fact is that the overlapping between the horizontal partitions can be limited
only to the halo cells directly adjacent to the interface sides.

Therefore, in the parallel software implementation the external halo objects (polygons, edges,
cells, sides) are taken into account in the object lists, sorted contiguously and included in the local
connectivity tables for partitions at distinguishable positions. Values of variables for these external
halo objects are computed in the neighbouring partitions (where they are internal cells, actually)
and fetched via message-passing communication if necessary. In this manner all dependencies on
the values addressed via connectivity tables from the horizontally oriented computational loops
over internal cell or side indices are fulfilled. A characteristic feature of this approach is the
fact that the common interface sides are treated as internal sides from the point of view of both

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1157–1179
DOI: 10.1002/fld



PARALLEL IMPLEMENTATION OF A NON-HYDROSTATIC MODEL 1167

the neighbouring sub-domains and the velocity is computed independently in these sub-domains
without exchanging any values via communication.

A similar analysis can be done for the vertical momentum equation as well:

w̃n+1
i,k+1/2 = Fwn

i,k+1/2−(1−�)
�t

�zni,k+1/2
[qni,k+1−qni,k]

+ �t

�zni,k+1/2

[
�vi,k+1

w̃n+1
i,k+3/2−w̃n+1

i,k+1/2

�znj,k+1
−�vi,k

w̃n+1
i,k+1/2−w̃n+1

i,k−1/2

�zni,k

]

k=mi ,mi +1, . . . ,Mn
i −1 (21)

where F is an explicit finite difference operator

Fwn
i,k+1/2=w∗

i,k+1/2+�t�h�hw
∗
i,k+1/2 (22)

described in Sections 4.3.1 and 4.4. For each cell i , the set of Equations (21) forms a linear,
tridiagonal system with unknowns from the same water column w̃n+1

i,k+1/2, which is solved by a
simple, direct method. All terms in Equations (22) concern one water column i , which confirms
that the vertical partition interfaces have an additional advantage that all operations over vertical
columns k of cells or sides can be performed locally, without the necessity of any additional
communication.

4.3. Iterative or sub-stepping procedures

The iterative parts of the algorithm require a special care in the parallelization procedure. In most
cases, exchanging data between partitions inside iterative loops is unavoidable, but the frequency
of communication calls can be minimized. In the explicit part of the algorithm, the horizontal
diffusion stability requirements force a sub-stepping treatment. In the implicit part of the algorithm,
iterative methods appear in the solution of the wave equation for the provisional free surface.
A similar situation occurs for the Poisson equation for the dynamic pressure and in the transport
treatment.

4.3.1. The explicit treatment the horizontal velocity Laplacian. The horizontal velocity Laplacian
�h�hu∗

j,k in (20) and �h�hw
∗
j,k+1/2 in (22) for the horizontal viscosity terms are discretized with

the finite differences involving direct neighbour cells in the horizontal direction. This explicit
approach introduces a mild stability constraint on the time step [6]:

�t�
[
2�h

(
1

�x2
+ 1

�y2

)]−1

(23)

In order not to make it a constraint for the time step of the global scheme, an approach with
sub-stepping in time is chosen. It means, for the parallel implementation, that at each sub-step
the changing values of horizontal or vertical velocity for halo and interface cell faces must be
exchanged in each iteration loop.
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4.3.2. The wave equation. The wave equation method is used to find the provisional position
of the free surface and the horizontal velocity. This approach combines Equation (19) and the
semi-implicit finite volume discretization of the vertically integrated continuity equation (5):

Pi �̃
n+1
i = Pi�

n
i −��t

Si∑
l=1

[
si,l
 j (i,l)

M∑
k=m

�znj (i,l),k ũ
n+1
j (i,l)

]

−(1−�)�t
Si∑
l=1

[
si,l
 j (i,l)

M∑
k=m

�znj (i,l),ku
n
j (i,l)

]
(24)

where Pi is the area of i th cell. si,l is a sign function, equal to +1 if the positive value of the
velocity on the edge l corresponds to outflow, and equal to −1, if it corresponds to inflow to the
i th water column.

Instead of combining (19) and (24) using the discretized forms of (10) and (12) for building
a larger equation system (in the order of NzNs+Np), both equations are treated in a decoupled
way, in order to find the water level first from a discrete wave equation and the provisional
horizontal velocity later. This yields one linear system for Np unknowns and a set of Ns independent
tridiagonal systems of Nz equations. Leaving the derivation details to [11, 24] we quote here the
final wave equation for the free surface to be solved in the matrix form:

Pi �̃
n+1
i −g�2�t2

Si∑
l=1

si,l
 j (i,l)

� j (i,l)
[(�Z)TA−1�Z]nj (i,l)(�̃n+1

i[ j (i,l),2]− �̃n+1
i[ j (i,l),1])

= Pi �̃
n
i −(1−�)�t

Si∑
l=1

si,l
 j (i,l)[(�Z)TU]nj (i,l)−��t
Si∑
l=1

si,l
 j (i,l)[(�Z)TA−1G]nj (i,l) (25)

Matrices Ũn+1
j and �Zn

j contain horizontal velocity components and the vertical cell heights,
respectively. Gn

j contains terms connected to the explicit operator F, free surface and dynamic
pressure gradients and shear boundary conditions. An

j contains terms with the vertical diffusion
and shear boundary conditions. For parallelization it is enough to state that all the values in these
matrices are already given or can be computed locally in partitions.

Equations (25) form a linear, sparse system of equations in the order of number of cells Np for
�̃n+1
i , which is strongly diagonally dominant, symmetric and positive definite. It is solved using
preconditioned conjugate gradient method in an iterative manner until the residual norm becomes
smaller than a user-defined tolerance ε�. This method requires a few communication calls for
polygon-oriented values in the pre-conditioning stage, however only one complete polygon halo
swapping of the values for dot products in the internal iterations of the solver, as well as computing
global sums for, e.g. residual values.

With the provisional water level �̃ computed and communicated between sub-domains, the
provisional horizontal velocity ũ is found from a transformed form of Equation (19):

An
j Ũ

n+1
j =Gn

j −�g
�t

� j
(�̃n+1

i( j,2)− �̃n+1
i( j,1))�Z

n
j (26)

which forms a set of Ns independent tridiagonal systems of Nz linear equations for the same water
column over an edge j . With all matrices computed and updated via communication previously,
this part can be done in a separate way in all sub-domains, exchanging the final results with
neighbour partitions only once later.
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4.3.3. The discrete Poisson equation. The central part of the second fractional step of UnTRIM
algorithm concerning the computational effort is the discrete Poisson equation. It delivers the
dynamic (non-hydrostatic) pressure correction q̃ , which in combination with the provisional free
surface elevation �̃n+1

i yields the global pressure:

pn+1
i,k =g(�̃n+1

i −zk)+ q̃n+1
i,k (27)

Omitting the equation for k=M for simplicity, for the remaining levels k one can express

g�2�t2
[

Si∑
l=1

si,l
 j (i,l)�z
n
j (i,l),k

q̃n+1
i[ j (i,l),1],k− q̃n+1

i[ j (i,l),2],k
� j (i,l)

+Pi

(
q̃n+1
i,k − q̃n+1

i,k+1

�zni,k+1/2
− q̃n+1

i,k−1− q̃n+1
i,k

�zni,k−1/2

)]

=g��t Pi (w̃
n+1
i,k−1/2−w̃n+1

i,k+1/2)−g��t
Si∑
l=1

si,l
 j (i,l)�z
n
j (i,l),k ũ

n+1
j (i,l),k

k=mi ,mi +1, . . . ,Mi −1 (28)

Equations (28) form a system of NpNz linear equations solved by preconditioned conjugate gradient
solver in an iterative manner. As in the case of the wave equation (25) the iterations of the solvers
in sub-domains are strongly coupled. However, the exchange of the values for partial results in each
iteration for the 3D halo cells is done only once. Compared with the equation set (25) the number
of iterations is usually relatively large, so that the level of coupling can be probably reduced in
order to iterate possibly independently in the partitions.

4.3.4. The final stages. In the final projection stage, there are no iterative procedures, but it is
described in this place for the sake of completeness. With all provisional values computed and
with values exchanged over the overlapping areas, all computations concerning final values can
be performed locally. The formulae for the dynamic pressure q and the elevation � as well as the
final velocity field (u,w) are

qn+1
i,k = q̃n+1

i,k − q̃n+1
i,M , k=mi ,mi +1, . . . ,Mi −1 (29)

�n+1
i = �̃n+1

i + q̃n+1
i,M

g
(30)

un+1
j,k = ũn+1

j,k −�
�t

� j
(q̃n+1

i( j,2),k− q̃n+1
i( j,1),k) (31)

wn+1
i,k+1/2=wn+1

i,k−1/2−
1

Pi

Si∑
l=1

si,l
 j (i,l)�z
n
j (i,l),ku

n+1
j (i,l),k, k=mi ,mi +1, . . . ,Mi −1 (32)

The sum in the continuity equation (32) above is computed for each cell column concerning all
surrounding edges, which is done locally in partitions.

Finally, the total depth H at each cell side j is computed from

Hn+1
j =max[0,h j +�n+1

i( j,1),h j +�n+1
i( j,2)] (33)

which also determines if an edge becomes dry or wet. This determination of the cell side status
can be done locally in partitions, communicating the pre-condition for the dry/wet state of cells
(i.e. values of � and geometry changes due to the free surface movements) before.
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4.3.5. The transport equation. The transport equation (15) is solved using a conservative, semi-
implicit finite volume scheme with a min–max property, using flux limiter functions. A time step
sub-cycling approach is applied in order to avoid stability restrictions on the time step in the whole
model (for details refer to [13, 24]). Consequently, in each sub-cycle a set of Np linear, tridiagonal
systems of equations with Nz unknowns being scalar concentrations defined in the middle of the
cells in the same water column is solved applying a direct method. In the parallel implementation,
in each sub-cycle the scalar concentrations as well as equation coefficients in the overlapping
areas have to be updated between neighbouring partitions, resulting in two halo cell swaps per
sub-iteration. Additionally, the time sub-step for sub-iterations must be found as the minimum
value in all sub-domains.

4.4. Parallel streamline tracking

Neglecting for the sake of clarity the influence of fluid density �, horizontal viscosity �h and
atmospheric pressure pa, the explicit finite difference operators F from Equations (20) and (22)
can be expressed in a simple form containing only the advection and the Coriolis force terms:

Funj,k = [1−�(1−�) f 2�t2]u∗
j,k+ f �tv∗

j,k

1+�2 f 2�t2
(34)

Fwn
i,k+1/2=w∗

i,k+1/2 (35)

The values of u∗
j,k and w∗

i,k+1/2, respectively, are obtained using the semi-Lagrangian method
for the advection (v∗

j,k is the local tangential component for Coriolis terms). The values for a

head side ( j,k) at tn+1 are found following the streamline (i.e. characteristic curve, Lagrangian
trajectory) backwards in time until the foot position for tn is found and interpolating the value
there from the surrounding prism sides for this previous time step (Figure 3). For convenience, the
term traceback is introduced to describe this procedure including the data required for the actual
streamline backtracking, the interpolation and the finally obtained results.

The semi-Lagrangian advection methods are awkward to treat in the communication pattern
of partition neighbourhood relationships described in Section 4.2. The first idea—to extend the
overlapping halo cell areas into neighbourhood partitions so far as the expected Courant numbers
(Cr j,k =unj,k�t/� j ) dictate—allows performing the streamline backtracking locally in one partition,
but imposes some arbitrarily set limitation on the time step (or forces to sub-stepping with smaller
time steps) and is inevitably connected with unnecessarily growing amounts of data to be exchanged
via communication for larger Courant numbers [3, 4]. Indeed, if the Courant numbers could be
kept low enough so that it could be guaranteed that the backtracking does not leave the partitions
extended with halo cells at any time, no special treatment of them would have been necessary.
However, at this stage another component of the method comes into play, namely the velocity
value interpolation at the foot position. Owing to the fact that the interpolation quality determines
the level of the numerical diffusivity of the scheme [25], UnTRIM implements the interpolation
in polygon patches if the polygon neighbours are available, which allows identical accuracy in
the serial and parallel case only for the internal partition cells, and not the external halo cells
(Figure 3). In order to avoid differences in accuracies between runs with different numbers of
partitions, the halo overlapping would have to be increased even more.

A completely different approach would be to give up the semi-Lagrangian treatment of the
advection terms in UnTRIM and apply an alternative advection scheme at the cost of imposing
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some limitation on the time step, but allowing a straightforward parallel implementation. However,
the application of modern finite difference Eulerian schemes for unstructured meshes (e.g. [18])
has been excluded so far due to their adverse properties for general-purpose codes; see e.g. [17].
An implementation of an implicit advection scheme for unstructured meshes would be simpler to
realize in the case of a decomposed domain, but would probably change the numerical properties
of the overall scheme and has not been considered.

Therefore, an algorithm has been developed for the parallel streamline tracking in which the
tracebacks leaving partitions they originate from are treated as autonomous, self-contained objects.
The data type describing these tracebacks is also defined as a specific MPI data type for effi-
cient message passing using arrays of such objects. If the streamline backtracking leaves the
given partition (i.e. crosses the common interface sides), the traceback in question gets an iden-
tifier describing its origins—the partition and the head position (i, j,k) there—as well as the
position in the neighbour partition it is passing into. The traceback object also contains fields
for the interpolated values at the foot of the trajectory. All leaving tracebacks are sent to and
implanted in the partitions they are to enter for a further treatment. If a next interface between
partitions is met while backtracking in the neighbour partition, the autonomous object is passed
to the further neighbours, and so on, until all trajectory feet are found. When it happens, all
finalized tracebacks are sorted according to their origin partitions in their identifiers and sent back
there using global (all-to-all) communication methods. In the final stage, the interpolated values
contained in the received lost traceback objects are applied where they belong—at their head
positions.

The main advantage of the new algorithm is that it reduces the parallel overhead to the treatment
of the ‘lost’ tracebacks only and is in a more intensive use only when larger flow Courant numbers
nearby the partition interfaces occur.

4.5. Boundary conditions

The parallel implementation brings a complication for prescribing boundary conditions: in the
process of the domain decomposition, the open boundaries can be divided between partitions. For
boundaries with imposed water levels, Equation (14), this is the simple issue of recognizing which
boundary belongs to which partition. However, in the case of velocity boundary conditions in the
form of imposed fluxes, in order to apply the correct values in each stretch of the divided boundary,
an additional communication is required. This is realized for a general case of numerous open
boundaries by definition of MPI sub-communicators in processor groups sharing open boundaries
with imposed fluxes. This adds only a minimal amount of communication to the scheme.

5. RESULTS

5.1. Verification

Taking results of the serial code as reference, verification of a parallel code implementation is based
on presenting evidence that obtained numerical results do not differ between runs with different
numbers of partitions and that the code execution speedup grows with the number of processors
applied. In the mesh partitioning method, the unavoidable, but usually very small, discrepancies
between runs with varying processor numbers are caused by changes in the number and sequence
of the floating-point operations due to the different conditioning of the iterative equation solvers

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1157–1179
DOI: 10.1002/fld



1172 J. A. JANKOWSKI

and changing iteration numbers there. Some differences can also be caused by the variability in
reaching thresholds triggering different algorithm parts (e.g. for drying and wetting treatment,
min/max principles). Numerous examples from the UnTRIM validation document [24] as well as
from the BAW consultancy work [2, 26, 27] have been absolved by the parallel implementation.
In the following text two representative test cases for the hydrodynamic part of the algorithm (one
schematic and one real-life application) are presented and discussed, taking also into account the
formulation of recommendations for maintaining the scheme accuracy and performance in typical
applications.

The accuracy and parallel performance investigations have been done applying the state-of-
the-art shared-memory massive parallel compute servers of the BAW, SGI Altix machines with
1600MHz Intel Itanium-2 processors with 6MB secondary cache. The computations were made
in a normal, multi-user server operating modus, however, using CPU-sets guaranteeing rela-
tively good reproducibility of the achieved execution times (never more than 5% discrepancies
between runs with variable machine load). Therefore, it is assumed that hardware quality cannot
have a negative influence on the performance of parallel codes adequate for runs up to 250
processors.

5.2. Accuracy

The verification example concerning the short waves entering a harbour basin demonstrating
UnTRIM ability to model wave reflection and diffraction in a complex geometry is a demanding
example for testing the parallel implementation due to the fact that all parts of the non-hydrostatic
hydrodynamic algorithm must be applied in this case [24, 28].

A harbour basin with a constant depth of H =10m and the horizontal geometry presented in
Figure 4 is meshed applying 13 096 triangular polygons with 19 834 edges. The typical edge length
in the mesh interior is in the range 5m<
 j<5.6m and circumcentre distances in 2.8m<� j<3.75m.
In the vertical direction the mesh consists of 32 layers in the range between −2.0 and 10m, the
upper 12 layers with a thickness of 0.25m and the remaining of 0.5m. The resulting 3D mesh
consists of 418 208 prisms. At the harbour basin entrance, the free surface is agitated by a sinusoidal
wave with a period of 12 s and an amplitude of 1m. The time step is chosen to be �t=0.25s,
and the simulation time is t=90s. The entering waves are diffracted at the left entrance corner
of the basin and reflected from the diagonal basin wall to the right and the wave-breaker inside
the harbour. By t=90s the entering, diffracted and reflected waves are superimposed, producing
a complicated wave pattern, which is taken for the comparison of the differences between parallel
runs with 1 and 4 or 48 processors. Four values for both the solver accuracies, ε� =εq =ε, namely
10−4, 10−6, 10−8 and 10−10 are applied.

The resulting 12 comparison cases are presented in Table I. Although for the larger precision
ε the number of iterations in the solvers for the water elevation i� and the dynamic pressure
iq grows, the residual values r� and rq computed as a sum from all partitions in the parallel case
do not change to a large precision with the varying number of processors n, resulting in the same
number of iterations. There is a tendency that the maximum differences in the computed values for
elevation �diff, normal velocity udiff and dynamic pressure qdiff grow slightly with the number of
processors n, but remaining at a very similar level independently from the precision of the solvers.
This is a clear indication that these differences are proportional to the length of interfaces between
mesh partitions, i.e. to the amount of the communication. However, it must be noted that the level
of these discrepancies is thoroughly negligible for practical purposes.
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Figure 4. The test case short waves in a harbour basin. The wave pattern in the harbour basin of a
constant depth after t=90s of simulation time, shown in terms of water levels e and the absolute value

of the vertically averaged velocity |u|.

Table I. Accuracy of the model short waves in a harbour basin.

n ε i� r� iq rq �diff udiff qdiff

1 10−4 5 0.57847440E−05 24 0.95682396E−04
4 10−4 5 0.57847440E−05 24 0.95682396E−04 1.065E−14 1.261E−13 9.592E−14
48 10−4 5 0.57847440E−05 24 0.95682396E−04 1.221E−14 8.970E−14 9.814E−14
1 10−6 6 0.19502884E−06 33 0.58604017E−06
4 10−6 6 0.19502884E−06 33 0.58604017E−06 7.993E−15 1.171E−13 8.704E−14
48 10−6 6 0.19502884E−06 33 0.58604017E−06 8.215E−15 1.327E−13 8.082E−14
1 10−8 7 0.71237680E−08 40 0.79228882E−08
4 10−8 7 0.71237680E−08 40 0.79228882E−08 1.265E−14 1.221E−13 1.287E−13
48 10−8 7 0.71237680E−08 40 0.79228882E−08 1.421E−14 1.526E−13 1.261E−13
1 10−10 9 0.69746699E−11 47 0.90761763E−10
4 10−10 9 0.69746699E−11 47 0.90761763E−10 2.264E−14 1.876E−13 1.616E−13
48 10−10 9 0.69746699E−11 47 0.90761763E−10 1.376E−14 2.075E−13 1.088E−13

5.3. Performance

If tn is the computation time applying n processors, the parameters describing the parallel perfor-
mance gain compared with a run with m processors (m�n, usually m=1), such as the cost c,
speedup sm , efficiency em are defined here as follows:

c(n)=ntn, sm(n)= tm/tn, em(n)=sm(n)/n (36)

As a representatively large model for a convincing performance test, a model of a 14 km-long
lowland stretch of the main channel of the River Elbe by Coswig [29] resolved with a high-quality,
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Figure 5. A fragment of the high-resolution mesh of the model The River Elbe by Coswig.

fine, almost regular mesh of quadrilateral polygons with � j ≈2m and in the 3D case 22 horizontal
levels with �zk =0.5m is presented. For this resolution, the base mesh has 738 485 polygons and
the 3D mesh 8 006 838 cells (Figure 5).

The model is initialized with imposed water levels known from the measurements all over the
area and steered with the constant flux of 360m3/s at the inflow and a constant water level of
58.42m at the outflow. For these conditions, typical for a mean flow in this river stretch, the
resulting shoreline must be reproduced from a pattern of dry and wet polygons on the narrow
foreland, which are set anew in each time step, taking into account a threshold of �zmin=5mm
representing a minimum water depth below which a polygon or edge is treated as dry. In the runs
with various number of partitions, the percentage of wet polygons may vary around the mean
value of 77% at the end of the computation, with the discrepancies growing with the number
of processors—e.g. for 192 processors this percentage varies already between ca. 30 and 100%.
UnTRIM is applied in 2D and 3D, non-hydrostatic mode. In all cases, 300 time steps of �t=2.0s
are computed starting from the initial conditions described above. The solver accuracy for the
water level is set to ε� =10−6 and for the dynamic pressure to εq =10−9.

The performance results for the 2D case are presented in Table II for the processor range 1–192
and for the 3D case in Table III for the range 8–192. The 2D results show a super-linear speedup
relative to one processor s1, revealing suboptimal serial runs by larger meshes. Similar effects
can be observed in the speedup data relative to 8 processors s8 for the computationally much
more intensive 3D case. In order to interpret the data, the speedup is scaled to the number of
processors by which the parallel efficiency e1 or e8 of the code reaches a maximum, i.e. for m=96
processors. The relative efficiency e96 diminishes below 96 processors, which can be explained
by cache misses occurring through the indirect addressing in larger unstructured meshes. The
relatively smaller efficiency losses above 128 processors arise from the growing relative amount
of the halo cells causing an increase in the communication, as well as from growing discrepancies
between wetting percentage of the partitions. However, as tests with other models confirm, the
latter factor is important only when these discrepancies grow much more drastically causing larger
imbalances in the computational load, which can especially be noted when completely dry and
completely wet partitions occur.
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Table II. Performance of the 2D model The Elbe River by Coswig.

n tn (s) c (s) s1 (n) e1 (n) s96 (n) e96 (n) Halo (%) Wet (%)

1 12043.3 12043.3 1.000 1.000 0.745 0.745 0.00 77.77
2 5654.8 11309.6 2.130 1.065 1.588 0.794 0.03 77.12−78.43
4 2668.5 10673.8 4.513 1.128 3.364 0.841 0.09 74.75−79.48
8 1309.9 10479.8 9.194 1.149 6.853 0.857 0.20 73.94−82.67
16 616.9 9869.6 19.524 1.220 14.554 0.910 0.43 69.59−83.99
32 289.7 9270.7 41.570 1.299 30.987 0.968 0.95 66.10−88.43
48 194.3 9326.0 61.986 1.291 46.205 0.963 1.44 65.68−88.37
64 142.6 9128.8 84.433 1.319 62.938 0.983 1.90 56.06−89.76
96 93.5 8977.3 128.786 1.342 96.000 1.000 2.87 42.05−90.75
128 70.9 9070.0 169.960 1.328 126.692 0.990 3.57 49.12−92.31
160 57.9 9274.2 207.774 1.299 154.879 0.968 3.99 43.66−92.10
192 53.1 10186.9 226.990 1.182 169.203 0.881 4.46 29.60−100.0

Table III. Performance of the 3D model The Elbe River by Coswig.

n tn (s) c (s) s8 (n) e8 (n) s96 (n) e96 (n)

8 15718.4 125747.2 8.000 1.000 6.428 0.803
16 7752.0 124031.6 16.221 1.014 13.033 0.815
32 3654.9 116956.4 34.405 1.075 27.643 0.864
48 2436.8 116964.9 51.604 1.075 41.461 0.864
64 1709.3 109395.2 73.566 1.149 59.106 0.924
96 1052.4 101030.4 119.486 1.244 96.000 1.000
128 821.0 105090.1 153.160 1.197 123.055 0.961
160 665.1 106412.1 189.072 1.182 151.908 0.949
192 587.4 112778.3 214.079 1.115 172.000 0.896

In order to investigate the influence of the new parallel streamline algorithm (Section 4.4) on the
overall speedup of the code, runs with two different time steps are compared. For the mean flow
in the middle of the river channel with a representative velocity of approx. 1m/s, by �t=0.5s
the Courant numbers are small enough so that only the tracebacks stemming directly from the
interface between partitions are treated. By �t=2.0s one has already additional hundreds (2D) or
thousands (3D) of tracebacks leaving the partition interiors to be dealt with by the new parallel
streamline tracking algorithm. In Table IV 2D and 3D, non-hydrostatic computations are contrasted
additionally with run results when the advection step is switched off (physically incorrect, but
numerically possible). The data reveal that in the given error range the speedup is only slightly
dependent on the fact, if the parallel advection algorithm is applied in its full extent or not (columns
2s,a, 0.5s,a) or the advection is not taken into account at all (columns 0.5s,na and 2s,na).

For studying the influence of the growing amount of halo the swapping on the speedup in the
available range of processors, the verification case short waves in a harbour basin (Section 5.2) is
adequate, because the mesh is relatively smaller and no wetting and drying of mesh polygons occur.
The results for (unphysical) two-dimensional 2D and three-dimensional hydrostatic 3Dhy, as well
as (physical) non-hydrostatic case 3Dnh, which in this context differ strongly in the computational
cost, are presented in Table V. In all cases ε� =εq =10−10.
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Table IV. The model The Elbe River by Coswig, comparison between the achieved speedup (scaled for
96 processors) according to the effort required for the parallel advection scheme.

2D 3D

n 2s,a 0.5s,a 2s,na 0.5s,na 2s,a 0.5s,a 2s,na 0.5s,na

8 6.85 6.84 6.43 6.47 6.43 6.71 6.11 6.51
16 14.55 14.52 13.89 13.88 13.03 13.65 12.45 13.18
32 30.99 30.23 29.72 29.20 27.64 28.77 26.46 28.18
48 46.21 45.13 44.76 44.21 41.46 42.53 39.35 41.72
64 62.94 62.06 61.59 60.95 59.11 59.59 57.82 58.87
96 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00
128 126.69 128.40 128.27 129.81 123.06 122.78 124.25 123.93
160 154.88 159.28 159.94 162.46 151.91 152.58 155.16 154.28
192 169.20 175.80 175.42 178.95 172.00 172.64 178.60 175.01

Table V. Performance of the model short waves in a harbour basin.

tn (s) s1(n)

n 2D 3Dhy 3Dnh 2D 3Dhy 3Dnh Halo (%)

1 54.5 985.6 2651.1 1.0 1.0 1.0 0.0
2 27.3 507.3 1280.7 2.0 1.9 2.1 1.06
4 14.1 257.2 563.4 3.9 3.8 4.7 2.63
8 7.7 133.4 272.1 7.1 7.4 9.7 4.27
12 5.6 90.8 186.2 9.8 10.9 14.2 5.90
16 4.7 71.8 146.2 11.6 13.7 18.1 7.62
24 3.8 49.8 103.0 14.5 19.8 25.7 9.99
32 3.5 39.7 83.2 15.8 24.8 31.8 12.02
48 3.1 28.5 59.9 17.8 34.6 44.3 15.02
64 3.6 24.2 53.9 15.1 40.8 49.2 17.80
96 4.4 19.1 42.8 12.5 51.6 62.0 22.39

It can be roughly estimated that for the 2D case a breakup of the speedup with the increasing
number of processors appears above ca. 5% of halo cells in partitions, in 3D hydrostatic case
above ca. 10% and in the most computationally intensive non-hydrostatic case above ca. 15%.
These values can also be confirmed with other test cases.

As a conclusion, it can be stated that for the parallel implementation of UnTRIM the recom-
mendations for users concerning the accuracy and performance limits are typical for the domain
decomposition method: when the computational load can be kept balanced between partitions, a
larger percentage of halo cells should be avoided.

6. SUMMARY AND OUTLOOK

6.1. Summary of the parallel algorithm

The parallel implementation of the UnTRIM algorithm follows the mesh partitioning method for the
finite volume and finite difference parts of the scheme. The partitioning of the horizontal base mesh
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for well-balanced partitions in terms of number of polygons and shortest possible interface lengths
is based on the Metis and ParMetis libraries [23]. The exchange of data concerns overlapping
halo areas of the neighbouring mesh partitions and can be reduced only to the objects concerning
the halo cells directly adjacent to the vertical prism sides along the vertical interfaces. The initial
stage of the computation deals with preparing partitioned mesh and data structures optimized for
the halo-swapping efficiency with 2D and 3D objects treated separately and sorted into possibly
contiguous data fields. This is especially important for all strongly coupled iterative parts of the
algorithm, where communication is necessary in each iteration.

This approach leads to a limited set of point-to-point communications between directly neigh-
bouring mesh partitions. The parallel overhead—i.e. costs of the communication between proces-
sors and the effort required to prepare data for sending and applying the received values—is
diminished during the actual run by limiting the amount of exchanged data only to the required 2D
and 3D halo objects (cells, sides, edges, polygons) and pre-sorting the required fields for efficiency.
The global communication is necessary in the case of the new object-oriented parallel algorithm
for the streamline tracking in the explicit advection treatment with the semi-Lagrangian method.
The parallel overhead is limited only to the treatment of these tracebacks that actually leave the
partitions. The sub-communication in processor groups is sporadically necessary for treatment of
boundaries with prescribed fluxes, with a minimal amount of data to be exchanged.

In order to maintain the good parallel performance of the code, the recommendations typical for
domain decomposition methods apply, with the percentage of the halo cells and the computational
load balancing between partitions as the determining and limiting factors for the speedup. However,
if a few simple recommendations are followed, even in the computationally most intensive cases
the reached scalability of the whole algorithm is appropriate for dealing with larger, highly resolved
models aimed for real-world hydro-engineering studies.

6.2. Outlook

Further improvements in the overall performance and accuracy are expected by advances in the
UnTRIM algorithm and its software implementation. The super-linear speedup reveals that there
is a possibility of performance increase for the lower number of partitions by modifying UnTRIM
software implementation in order to use the processors with a larger secondary cache more effi-
ciently. Advances are expected also by balancing the computational load using a hybrid parallel
execution mode (MPI and OpenMP) and by further developments in the practical applicability of
partitioning methods taking criterions concerning, e.g. expected water levels during the simulations.
Additionally, maintaining accuracy and reproducibility of the results between runs with different
numbers of processors is to be investigated with regard to local and global wet/dry thresholds and
min/max principles in these parts of the serial algorithm which are being modified presently.

7. CONCLUSIONS

A message-passing parallel version of UnTRIM based on the mesh partitioning method has been
developed without compromising the properties of the serial code. Scalability appropriate for
dealing with larger models is reached due to the communication methods appropriately designed
for the significant parts of the algorithm and minimizing the amount of data exchanged between the
processors. The new autonomous parallelized streamline backtracking scheme does not influence
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the overall scalability of the scheme and is free of any limitations due to the parallel implementation.
The computations with standard verification test cases and larger real-world models confirm that the
presented implementation allows an efficient and accurate application of this code on state-of-the-
art high-performance computers for computationally intensive hydraulic engineering applications.
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